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THE EFFECT OF VARIATIONS IN THE CREEP EXPONENT
ON THE BUCKLING OF CIRCULAR CYLINDRICAL SHELLSt

TERENCE c. HONIKMANt and NICHOLAS J. HOFF

Stanford University, Stanford, California

Abstract-The senior author solved the problem of axially symmetrical creep buckling of thin circular cylindrical
shells subjected to uniform axial compression. In that analysis the constitutive equation was a power law, and the
exponent was taken to be equal to three. The purpose of this work was to extend the solution to a range of values
of the creep exponent, n. To cope with the increasing algebraic complexity, a digital computer was employed in
two ways: to generate the set of equations symbolically, and then to solve these equations. The computer programs
were used to generate numerical solutions for the cases in which n was equal to 3. 5, 7 and 9. Two simple extra­
polation techniques were then employed to obtain approximate solutions to the critical time problem for values
of n up to 29.
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Subscripts

f

i
o
Superscript

radius of shell (see Fig. I)
coefficients in series for axial stress in inner face
coefficients in series for axial stress in outer face
distance between faces of equivalent sandwich wall (see Fig. 2)
coefficients in series for hoop stress in inner face
coefficients in series for hoop stress in outer face
Young's modulus of elasticity
coefficients in expression for radial displacements [equation (1)]
nondimensional radial displacement coefficient (used in computer programming)
exponent in uniaxial creep formula
compressive load
dimensionless wavelength parameter
time measured from instant of load application
Euler time defined in equation (8)
wall thickness of real shell
radial displacement (see Fig. 1)
axial coordinate
nondimensional radial displacement

Euler strain defined in equation (7)
creep rate of material under uniaxial applied stress (J

half wave length of buckle
applied compressive stress
classical critical stress of axially compressed thin shell
circumferential (hoop) stress
axial stress
nondimensional time

final
inner face
initial
outer face

dot indicates differentiation with respect to time t

t The work reported here was performed at Stanford University and sponsored by the U.S. Air Force Office of
Scientific Research under Contract No. F44620-69-C-0009.

t Now member Technical Staff, Public Safety Systems Inc., Santa Barbara, California 93105.
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INTRODUCTION

THE problem of creep buckling has received considerable attention during the past several
years [1-4]. In particular, the creep buckling of circular cylindrical shells has been studied
at Stanford [57]. In the senior author's paper, [5], the buckling was assumed to be axially
symmetrical and a closed form solution for the critical time, i.e. the time at which the
deformations become unbounded, was obtained. The constitutive equation was a power
law, and the exponent was assumed to be equal to 3. The purpose of this paper is to find
solutions for a range of values of the creep exponent, including nonintegral values.

One effect of increasing the value of the exponent is a corresponding growth in the
number of terms in several of the governing equations. Two digital computer programs
were developed to cope with this problem [6]. One, using a symbolic programming language
called Reduce (8] (which is a sublanguage of the Lisp family), developed those governing
equations which change with the creep exponent. The other solved the complete set of
governing equations by using standard numerical analysis techniques. The second program
was written in Fortran H.

The case in which the exponent is taken to be equal to five was also worked by hand [6J.
and as such, required the same simplifying assumptions that were used in the original
"n-equal-to-3" solution. Both of these solutions were compared to the numerical solutions
which did not involve the same assumptions.

Numerical solutions were obtained for the cases in which the exponent had the values
7 and 9 [6]. These four solutions formed the basis of two interpolation procedures by which
the critical time may be obtained for any value of the creep exponent between 3 and 9. If
a reasonable estimate is required, the critical time for cases in which the creep exponent lies
between 9 and 29, may be obtained by extrapolating the results for the lower values of 11.

THE ANALYTICAL RESULTS

Figure 1 indicates how the shell is loaded in compression. In order to simplify the
analysis a sandwich model is substituted for the real shell wall, see Fig. 2. This model has
been used successfully by several authors (9-11]. The details of the analysis are available for
the cases in which the creep exponent is taken to be 3 [5] and 5 (6]. Only the results of the
analyses will be presented here. Before this can be done however, certain notation should
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FIG. 1. Section through the thin cyclinder.
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FIG. 2. The sandwich model.

be defined. The radial displacement w of the buckles is given by

w = /0+/1 cos fl.

where /0 and /1 are constants, and

fl. nX/A

(1)

(2)

in which x is the axial measure and Ais the half-wavelength of the buckle. The axial stress,
(Jxi' in the inner face of the sandwich model is given by

co

(Jxi = -Co L Cjcos fl.
j~ t.2 ....

(3)

in which Co and Cj are constants. The circumferential stress, (Jhi in the inner face of the
sandwich model is given by

ex

(Jhi = Do+ L Djcos fl..
.i~ t.2, ...

(4)

The corresponding stresses (Jxo and (JhO in the outer face are given by similar expressions,
except that the constants are starred.

In order to understand the Euler time tE , recall the classical elastic buckling stress for a
thin cylinder

(Jer :::: 0·6£(t*/a) (5)

in which t* is the wall thickness, and a the shell radius. Rabotnovt [12J has suggested a
relationship between t*, the wall thickness of the real shell, and hand d (see Fig. 2) character­
izing the equivalent sandwich wall :

d = t*[n/(2n+l)Jnftn+lJ, h = t*/2 (6)

t Rabotnov's suggestion insures that the creep rate is the same for the real shell and for its sandwich equivalent
in the two limiting cases of pure compression and pure bending.
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in which n is the creep exponent. Thus if n is taken as being equal to five, and if the classical
stress is divided by the modulus, the result is the Euler strain BE:

(7)

And if the Euler strain is divided by the nominal creep strain rate Bnom , (which occurs at the
onset of the creep process, and which is proportional to an), the Euler time results:

(8,

(9)

A result of the original analysis [5J, in which the creep exponent n is taken as equal to
three is:

[
yJ(1.18 +ynJt/tE = T = 0·294 In --------
yf(1.18 +yJ)

in which In indicates the natural logarithm and the subcripts I and i refer to final and initial
values of the displacement parameter y which is dimensionless, and which is obtained by
dividing II by d. The critical time is defined as the time required for the deformations to
exceed all bounds. By setting Yf = ex), equation (9) becomes

ter/tE = Tcr = 0·2941n[(I·18 + Yl)/yf].

(n most cases, since y; « 1·18, this result may be simplified as follows:

Tcr = 0·588 In(l·08/y;).

(10)

(11)

In the case in which n is taken to be equal to five [6J, the results corresponding to equa­
tions (10) and (11) are:

and

Tcr = 0.0555In[(l-25+Y;)/YiJ

Tcr = 0·222In(l·06/y}

FURTHER SOLUTIONS

(12)

(13)

It was suggested [6J that equations (11) and (13) could be written in a general form:

(14)

where C1 and C2 are constants whose value depends on the creep exponent n. Ifit is assumed
that the form of the expression for the critical time is independent of the value of the creep
exponent, and that the values of C 1 and C2 vary continuously with the creep exponent, then
the problem of determining the critical time for a given creep exponent becomes the
question of finding the particular value of the constants.

While the value of the creep exponent may be as high as 216 for the aluminum alloy
35-H12 at 90°F [13J, most engineering materials exhibit creep exponents of less than 35
when tested at temperatures greater than 300°F. Thus it would appear that the values of the
constants eland c 2 need to be defined over a relatively small range of values of the creep
exponent. However, a cursory comparison of the "n-equals-3" solution [5J and the "n­
equals-5" solution [6J will indicate that a hand calculation for the cases in which n is
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greater than 5 would require an unreasonable amount of effort. In addition, Figs. 3 and 4
illustrate how the analytical assumptions degrade the value of the critical time solution as n
increases from 3 to 5.
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FIG. 3. Dimensionless displacement Fl as a function of dimensionless time r.

These reasons, and the increased probability of bookkeeping error as the number of
terms is increased prompted the development of two computer programs. The first, written
in Reduce [15J, (a sub-language in the Lisp [14J class), is able to produce the governing
equations, in symbolic form, for any integral value of the creep exponent, and the second,
using Fortran-H, solves the equations numerically.

THE FORTRAN PROGRAM

The ten governing equations are listed below. The first six are generated by the Reduce
program, by combining the constitutive law, three conditions of compatibility and four
stress expressions which are similar to equations (3) and (4). The resulting equations are
true for all values of cos iX, and this allows the equations to be split into sections which are
multiplied by cos iX, and those which are not.

ehO - ehi = 0 constant terms,

ehO - ehi = 0 cosine terms,

exo - exi = 0 constant terms,

exO - eXi = Rehi cosine terms,

(15)

(16)

(17)

(18)
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(ajd)Shi = io constant terms,

(ajdkhi = it cosine terms.

(19)

(20)

The subscripts h and x refer to hoop and axial directions respectively, while 0 and i indicate
the outer and inner faces of the sandwich model. The remaining four equations are inde­
pendent of n.

10

0.1

001

\'\\~\\
\ \\\\\ "\ ~

\ \

\ \ \
\ '
\ \ \
\ \ \

\ '\ \

--NUMERICAL
ANALYTICAL

6

FIG. 4. Dimensionless critical time T" as a function of initial value of dimensionless displacement FI;.

and

C~ = 2(J-Co,

Cf = -C I ,

D~ = -Do,

(21)

(221

(23)

(24)

where (J is the applied stress, and R is a dimensionless wavelength parameter. These
equations are rendered dimensionless by dividing the stress coefficients by (J and the dis­
placement coefficients by d.

The numerical solution is obtained in a stepwise manner. An initial value offt is chosen,
thus characterizing the initial imperfection in the shell. The stresses are then found by
solving equations (15)-(18) simultaneously. This requires linearization of the equations,
which is accomplished by use of the leading terms in four-dimensional Taylor series
expansion [6]. The Taylor series, in turn, requires the partial derivatives of the equations,
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with respect to each unknown. These partials were developed by the Reduce program. The
values of the four unstarred stress coefficients are found by Newton's method [16], and
the starred coefficients are evaluated from equations (21H24). With the eight stress co­
efficients known, the remaining two equations (19) and (20) are solved. Equation (20) was
integrated by using Simpson's Rule [16], and equation (19) was integrated by a graphical
technique. The result of integrating equation (20) is the dimensionless time r = tltE ,

required for the displacement to grow from the initial value ofit to the new value chosen in
Simpson's rule. This new value is then used to restart the cycle. The time is totaled after
each cycle, and when the time increment reaches a sufficiently small value, the program is
stopped. The total time to that point is taken to be the critical time.

RESULTS AND CONCLUSIONS

The computer programs were run for four values of the creep exponent, 3, 5, 7 and 9.
Comparisons between the numerical and analytical results were made, and are presented
in Figs. 3 and 4. In both cases it is clear that as n increases the analytical and numerical
results diverge. The divergence is a consequence of the retention of only the first and last
terms of the nth power ofa binomial in the analytical solution; in the computer solution all
the terms were considered. Evidently the accuracy of this analytical approximation de­
creases with increasing n. However, the integration could not be carried out in closed form
without the simplification.

The effect of the creep exponent is clearly seen in Fig. 5, which indicates the behavior of
the dimensionless displacement coefficient Fl for the four values of n; 3, 5, 7 and 9. These

10.O.-----n=-9-.-·7--,~5----.-3----,
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FIG. 5, Dimensionless displacement Fl as a function of dimensionless time r. with creep exponent 11 as
parameter (FI, = 0·001).
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curves are for a given value of the initial value of Fl, namely 0·001. Similar curves may be
obtained for different initial values by either using the different values in the numerical
procedure, or, approximately, by a simple graphical method, which is suggested by Fig. 6.
In this figure, the value of n is constant, and equal to 3, however the initial value of FI is
varied. The shape of each curve is unchanged, and to obtain one curve from another
requires only a horizontal shift of the original curve until it intersects the ordinate at the
required initial value of Fl. Of course the original curve must be produced from analytical
or numerical data, and these data should relate to the smallest initial value of F I that will be
needed. This shifting property was checked by numerical experiment, and has been proved
analytically [6J under certain restrictive conditions.

The effect of the wavelength parameter, R, was investigated numerically, and Fig. 7

shows how the critical time depends on R. It was noticed that the accuracy with which the
most dangerous value of R can be analytically obtained, decreases as n is increased. In the
case in which n equals 3, the most dangerous value of R was analytically predicted to be 2·0,
while the numerical solution was 2·1. However in the case in which n equals 5, the analysis
predicted 3·88 while the numerical result was again 2·1. It is assumed that the reason for this
degradation is also due to the neglect of a larger number of terms when the small and large
displacement assumptions are made.

Equation (l4) was suggested as a means of writing a general solution for the critical time
problem. The constants C I and C2 were obtained analytically, and C I was corrected in
accordance with the numerical solutions. The second constant C2 was not adjusted since
as it appears in the argument of a logarithm, its effect is reduced. By extrapolating the data

T

FIG. 6. Dimensionless displacement FI as a function of dimensionless time"t, with initial value of dimen­
sionless displacement Fl i as parameter.
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FIG. 7. Dimensionless critical time TO' as a function of dimensionless wavelength parameter R.

on Cz, new values of C 1 were obtained from the critical times for the cases in which n equals
7 and 9. Again, since Cz is relatively ineffective, it may be extrapolated without undue con­
cern for the accuracy. Each constant is now known for four values of n. If the curves are
extended so that the length of the abscissa is approximately doubled, they will, because of
the semi-logarithmic nature of the plot, yield data up to n equals 29. Such a plot is shown in
Fig. 8.

The analytical accuracy of this technique is not defended, rather the results are offered
as having perhaps some engineering usefulness, since the scatter in creep tests can be as high
as 50 per cent. or more. The curves were used to develop critical times for a wide variety of
cases, and the results are presented in Fig. 9. Since the parameters are dimensionless, the
results may be applied to a wide spectrum of configurations.
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FIG. 8. Constants C I and C2 as functions of creep exponent n.
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FIG. 9. Dimensionless critical time r a as a function ofcreep exponent n, with initial value ofdimensionless
displacement FI, as parameter.
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A6CTpaKT-3aAa'l.a ocecl1MMeTpl1'1eCKOli nOTepl1 YCToil'lI1BOCTI1 I1pU 110Jl3Y'leCTI1 TOHKI1X, KpyrJlhlX,

UI1JlI1HAPI1'1eCKI1X o60JlO'ieK, 110,ll.BeplKeHHblx ,lI.eilCTBI1IO paBHOMepHoro oceBoro ClKaTI111, perneHa paHee

X04l4l0M. B 3TOM perneHl111 ol1pe,ll.eJllllOrnee ypaBHeHl1e CTel1eHHOro Tl1l1a, C 3KcnOHeHTOM paBHoM TpH.

npeAMeToM npeAJlaraeMOli pa60Tbl llBJlHeTCH 0606ll\elllle perneHI1H ,lI.JlH 60Jlee rnl1pOKOrO Kpyra 3Ha'ieHHH

3KcnOHeHTa 110Jl3Y'l.ecTH n. .LlJlH 06eCne'leHHH pocTa aJlre6pal1'1eCKOli KOMI1JleKCHOCTI1, I1CnOJlb3yeTcll

u: B M B ,lI.ByX HanpaBJleHI1Hx: ,lI.JlH o606ll\eHIIH CHM6oJll1'1eCKI1 CI1CTeMbl ypaBHeHIIH, 11 3aTeM, AJlH perneHI111

3THX ypaBHeHli. I1CI10Jlb3YlOTCll 'I.I1CJleHHhle rrporpaMMbl AJlH o6061UeHI111 'lI1CJleHHhIX perneHI1H, ,lI.Jlll

CJly'iaeB, KorAa n paBHlIeTcll Tpl1, I111Th, ceMb 11 AeBllTb. 3aTeM, rrpHHMMalOTcll npoCThle CI10C06bI 3KcTpa­

nOJlllUHH ,lI.JlllI10JlY'ieHHll perneHllli 3a,ll.a'il1 KpHTH'lCCKOrO BpeMcHH, ,lI.Jlll lHa'l.eHIIH OT n ,11.0 29.


